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a b s t r a c t

Fruit flavour is the combination of numerous biochemicals: sugars for sweetness, acids for sourness and
volatile metabolites for aroma. The objective of this study was to establish a method to develop a target
list of statistically relevant compounds for the characterization of melon from non-targeted data, while
preserving the profile information. Five different varieties were sampled (sampling 12 biological repli-
cates from 12 plants) using dynamic headspace extraction, then analysed by gas chromatography–mass
spectrometry in full scan mode. Using Metalign and SIMCA-P software the raw data was spectrally aligned
and then subjected to principal component analysis (PCA). The principal component analysis plot showed
good separation of the five varieties based on their full scan GC–MS profile. Mass spectral data points
ultivariate statistics responsible for the differences between varieties were highlighted by further statistical analysis. The
mass spectra were then reconstructed and the corresponding chemicals identified using library search
or reference standards were available to create a new target component list. To validate the new target
list, the initial data set was re-processed using the targeted approach and the results subjected again to
principal component analysis. The two representations showed excellent agreement on the separation
of the five varieties. The new target list obtained from this study can be applied to differentiate and

rofil
characterize the volatile p

. Introduction

Secondary metabolites of fruits include a large number of
olatile compounds which contribute to the flavour and thus have
strong impact on customer response to different varieties [1].

There are various methods for measuring the volatile metabo-
ites of plant material. These methods usually consist of a sample
reparation technique to extract the volatile metabolites from the
issue, such as distillation [2–4], static [2] or dynamic headspace
xtraction [5–9], solid phase microextraction [2,4,5,10], direct
xtraction [11] or supercritical fluid extraction [2,4] and most
ypically gas chromatographic separation often using mass spec-
rometry as a detector of choice to allow metabolite identification
2–11].

The volatile profile data generated can be interrogated using
ifferent approaches depending on the focus of the study. Mul-

ivariate statistical tools can reveal profile differences using
C–MS data, without the need of previous peak identification

12,13]. For this however spectral alignment of the data is cru-
ial. Metabolomic studies involving mass spectrometry have the
ual problem of shifts in retention times between data files
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021-9673/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
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e of melon varieties using a list of statistically significant compounds.
© 2010 Elsevier B.V. All rights reserved.

and also small shifts in the mass axis within spectra. Therefore,
the data files need to be aligned before comparing against each
other. Many alignment strategies have been described in the lit-
erature. In principle, there are two types of data alignment. In
the first approach, data files are aligned against a master chro-
matogram. In the second approach, mass spectra of individual
components within the data files are matched to those in a spectral
database.

Nielsen et al. [14,15] published a correlation optimised warping
(COW) algorithm that aligned two-dimensional chromatographic
data without prior peak picking. The alignment of gas chromatog-
raphy mass spectrometry data based on peak lists (MSFACTs) was
described by Duran et al. [16]. Due to the highly complex nature
of the data, it was important to include the mass spectrometric
dimension in the data alignment as well as chromatography data.
Most of the recently described alignment algorithms identify first
marker peaks that can be used for alignment or they dissect the
mass spectra into individual m/z traces (mass chromatograms) and
shift the time axis of the chromatograms until all peaks are aligned.
The following enumeration lists a few published methods, with no
claim for completeness: MarkerLynx (Waters Corporation, Milford,

MA [17]), Metalign [13,18], XCMS [19,20], MZMine [21], MET-IDEA
[22], EQUEST [23].

Once the profile differences are revealed, studies often focus
on the chemicals underlying the observed differences and in this
case compound identification becomes necessary [9,13]. Due to

dx.doi.org/10.1016/j.chroma.2010.05.030
http://www.sciencedirect.com/science/journal/00219673
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he complex chromatograms typically obtained for fruit volatiles
ven the most thorough compound identification cannot guaran-
ee that all compounds which contribute to profile differences are
ncluded, risking information loss during data reduction. Moreover
omprehensive compound identification may also include numer-
us compounds without any significant contribution to the profile
ifferences.

The objective of this study was to establish a method to develop a
arget list of volatile compounds derived from a non-targeted anal-
sis which have a significant contribution to the profile differences
f the studied melon varieties. We used spectrally aligned chro-
atographic data and multivariate statistics to achieve this and

hen validated the target list against the non-targeted results to
rove that no major loss of information occurs in spite of the data
eduction.

. Materials and methods

.1. Sample preparation

Internal standard 1,4-dichlorobenzene was purchased from
igma–Aldrich (Gillingham, UK). It was diluted with methanol to
ive 500 �g/mL ISTD solution. To each sample 5 �L of the ISTD solu-
ion was added giving a theoretical maximum trapped amount of
500 ng.

Five melon varieties were grown and the fruits were harvested
t full maturity. Fruits from 12 plants of each variety were sampled
n replicates where fruit size allowed using dynamic headspace
xtraction. From each fruit 12 cores were cut and weighed into
500 mL Duran bottle. The internal standard was introduced into

ts container and then the bottle was closed with a specially trans-
ormed screw cap (Fig. 1). The sample bottle was then attached
o the extraction manifold, left to equilibrate to 42 ◦C, then sub-
ected to dynamic headspace extraction. Through the inlet line the
eadspace was purged by nitrogen at 50 mL/min for 35 min, while
olatile components were trapped on the absorbent tube attached

o the outlet line. The absorbent tubes were purchased pre-
lled from Markes Int. (Llantrisant, UK) containing 200 mg Tenax
A and 150 mg Carbograph 1TD. After extraction the absorbent
ubes were capped off with gas-tight brass fittings until analy-
is.

Fig. 2. Typical melon
Fig. 1. Sampling bottle with specially transformed cap.

2.2. Gas chromatography–mass spectrometry
Samples were analysed using a Unity/Ultra thermo desorption
system attached to an Agilent 6890-5973 GC–MS. Conditions of the
thermal desorption step were the following: tubes were desorbed

chromatogram.
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Fig. 3. PCA scores plot o

or 4 min at 280 ◦C while the trap was held at −10 ◦C using 168:1
plit ratio. After the trapping step the trap was heated to 300 ◦C
t 100 ◦C/s to transfer the volatile components on the GC column.
he GC column was VF-624 ms 20 m × 0.15 mm × 0.84 �m (Varian,
alo Alto, USA). The carrier gas was He 5.0 at 0.6 mL/min. The oven
rogram started at 35 ◦C held for 4 min then ramped at 2 ◦C/min
o 65 ◦C, ramped at 15 ◦C/min to 290 ◦C then held for 3 min. The
ata acquisition on the mass spectrometer was done in full scan
ode in the range 35–400 amu, with a scan rate of 3.89 scan/s,

t 230 ◦C ion source temperature and 150 ◦C quadruple temper-
ture. MSD Chemstation D.02.00.275 was used as data acquisition
nd processing system. A typical melon chromatogram is shown in
ig. 2.

.3. Spectral alignment and multivariate statistics

Metalign software was used for spectral alignment of the three-
imensional GC–MS data.

SIMCA-P Multivariate analysis software version 11 from Umet-
ics AB was used for principal components analysis (PCA) and
artial least squares discriminant (PLS-DA) analysis. PCA is a data
eduction and visualisation method which seeks to find the main
nderlying trends in a dataset and present these in simple graphical
orm. The scores plot shows the relationships present in the obser-
ations and the loadings plot shows the relationships between
he variables. PCA is an unsupervised method which reflects pat-
erns in datasets with no prior knowledge. In contrast PLS-DA is
supervised method where class membership is assigned before

he analysis and a maximum separation projection of the data
s made. PLS-DA utilises PLS regression with a binary Y variable

epresenting class assignment and may be thought of as a mul-
ivariate equivalent of linear discriminant analysis. In this study
he PLS-DA model is used diagnostically, where the regression
oefficients highlight which variables are responsible for class sep-
ration.
on-targeted approach.

The quality of a multivariate model is measured in terms of both
the variance explained and the predictive variance determined by
cross-validation (CV). The variance explained represents the fit of
the data determined by analysing the amount of variation left in
the model residuals. It is summarised by the R2 parameter. The
Q2 parameter summarises the predictive variation and is calcu-
lated by a “leave many out” cross-validation method. By default
in the SIMCA-P software one-seventh of the data is removed and
the model re-calculated. The left out data is then predicted by the
reduced model and the predictions compared to the actual values.
This is completed seven times so that every observation is left out
of the model at least once and the total predicted residuals are cal-
culated. From this the Q2 is calculated which is used both as an
estimate of the predictive merit of a model and to determine the
optimal number of components. Taking too many components may
entrain noise (random variation) into the model and is avoided
by stopping calculation of the next component if the Q2 starts to
decrease.

In addition PLS-DA models may be subjected to a permutation
test where the class memberships are deliberately scrambled in
order to check that the model could not have arisen by chance. This
is a necessary step with “omics” datasets where the large numbers
of variables and low number of observations mean that spurious
patterns with little or no predictive merit may arise by chance. For
an in depth discussion of multivariate model validation the reader
is encouraged to read Ref. [24].

3. Results and discussion

3.1. Non-targeted profile analysis with PCA
The raw data files were first spectrally aligned using Metalign
and then a scan number–fragment–intensity (non-targeted) matrix
was extracted from all data files. The data was then loaded into
SIMCA-P, where it was subjected to principal component analysis in
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Fig. 4. PLS-DA scores plot

able 1
ist of analytes.

Nr. Compounds Target ion [m/z

1 Ethyl alcohol 45
2 Methyl acetate 43
3 Ethyl acetate 43
4 Methyl propanoate 57
5 Isobutanol 43
6 Isopropyl acetate 43
7 Acetic acid 43
8 1-Butanol 56
9 S-methyl thiolacetate 43
10 Ethyl propanoate 57
11 Propyl acetate 43
12 Methyl butyrate 74
13 Dimethyl disulfide 94
14 Ethyl isobutyrate 43
15 2-Methyl-1-butanol 57
16 Methyl 2-methylbutyrate 88
17 Isobutyl acetate 43
18 Ethyl butyrate 71
19 Propyl propanoate 57
20 Butyl acetate 43
21 Ethyl 2-methylbutyrate 57
22 Ethyl 3-methylbutyrate 88
23 2-Methylbutyl acetate 43
24 n-Pentylacetate 43
25 Methyl hexanoate 43
26 Ethyl 2-methyl-2-butenoate 55
27 Ethyl hexanoate 88
28 Ethyl 2-methylthioacetate 61
29 (Z)-3-Hexenyl acetate 67
30 Hexyl acetate 43
31 Eucalyptol 108
32 2,3-Butanediol diacetate 43
33 Ethyl sorbate 67
34 Ethyl 3-metylthiopropanoate 74
35 Benzyl acetate 108
36 Ethyl octanoate 88
ISTD 1,4-Dichlorobenzene 146

: tentative identification based on Library search, with NIST match factor; std: identified
of varieties 1 and 5.

] RT [min] ID NIST match

3.06 T 900
3.92 T 948
6.61 std
7.26 T 944
8.54 T 925
8.81 T 941

10.59 T
10.55 T 826
10.88 std
11.68 T 952
11.99 std
12.45 std
13.81 T 965
14.99 T 880
15.78 std
16.42 std
16.51 std
18.36 std
19.13 T 921
19.57 std
21.14 std
21.32 T 828
22.30 std
23.22 std
23.44 T 817
23.87 std
24.95 std
25.05 std
25.16 std
25.24 std
25.57 T 671
26.22 std
26.71 std
26.93 std
27.81 std
27.84 std
25.45

using a reference standard.
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Fig. 5. PCA scores p
nit variance and Pareto scaling. Unit variance scaling (UV) gives all
ariables equal influence on the model ensuring small but interest-
ng correlations are not overlooked. A disadvantage of this scaling
s exaggeration of experimental noise from small components or
aseline effects. Pareto scaling is a compromise between UV scal-

Fig. 6. PCA loadings plot of
he targeted results.
ing and no scaling where medium scale features are up-weighted
and large features down-weighted without amplifying the low-
level noise. Pareto allows a consideration of the magnitude of the
metabolites present. In this case the scaling had very little effect on
the clustering in scores-space and for further analysis the Pareto

the targeted results.
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caling was chosen. The model had good fit and predictive values:
2 = 0.698, Q2 = 0.615. The Q2 was calculated by the standard 7-
old cross-validation available in the software. The close agreement
etween R2 and Q2 indicates a stable model with high likelihood
f predictive performance. The scores plot of the non-targeted data
howed good separation of the five varieties (Fig. 3).

.2. Target list building using PLS discriminant analysis

The data was then subjected to partial least squares discrim-
nant analysis (PLS-DA) to identify scan number–fragment data
airs which contribute most to the observed separation of the vari-
ties. The resultant score plots show the degree whose varieties are
eparated and the coefficient plots show the magnitude, sign and
onfidence of the contribution of each variable to the separation
Fig. 4).

The data pairs identified as important were then re-grouped
ased on the scan numbers and the corresponding peaks were

ocated in the original chromatograms. Tentative peak identifica-
ion was carried out using NIST library search, some of which was
ater confirmed by the use of reference standards. The list of melon
olatiles is presented in Table 1.

.3. Targeted profile analysis and validation

Once the list of components was established, a targeted data
rocessing method was created. The processing method was then
pplied to all chromatograms to obtain a sample–relative analyte
oncentration (targeted) data matrix. The next step was to vali-
ate that the target list based data reduction does not result in loss
f information. The targeted results were subjected to PCA. The
odel obtained had again good fit and predictive values: R2 = 0.738,

2 = 0.484. The scores plot of the targeted results showed an excel-

ent agreement with the scores plot of the non-targeted results
Fig. 5). The volatile compounds contributing most to the profile
ifferences of the varieties were presented by the loadings plot
Fig. 6). C5–C8 esters were identified as most significant of the target
ompounds.

[
[
[
[

1217 (2010) 6718–6723 6723

4. Conclusions

A systematic method is described for developing a target
list of statistically significant metabolites from a non-targeted
metabolomic dataset. Volatile components of fruits and vegetables
were determined using TD GC–MS in full scan. The data from non-
targeted metabolomic analysis of the samples was used to identify
the list of components which contribute to the statistically signif-
icant differences between the profiles of the studied varieties. The
obtained target list was validated when the data was re-processed
in targeted mode and subjected to PCA. The PCA plot obtained
using the revised target list showed excellent agreement with that
obtained from the non-targeted analysis. The validated target list
can be applied to characterize the volatile profile of related melon
varieties with component identification.
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